

Observational Architectures for Enabling Earthquake Forecasting

Curtis W. Chen, Carol A. Raymond, and Søren N. Madsen

Jet Propulsion Laboratory, California Institute of Technology

20-Year Vision

To enable accurate, timely earthquake forecasting to mitigate structural failures and reduce human and economic impacts of large earthquakes

Understand earthquake physics globally

- Time-dependent models of crustal deformation
- Stress maps with frequent updates

Develop accurate and timely forecasting capabilities

- Monthly hazard assessments for interacting fault systems
- Predict stress transfer and triggered seismicity
- Assess shaking and landslide vulnerability

Provide effective disaster management

- Improve building codes
- Prioritize retrofitting projects
- Rapid damage assessment
- Revise stress maps and hazard assessments

High Temporal Resolution InSAR JP is Required

Continuous

Spatial Coverage

Postseismic deformation Interseismic Coseismic rupture deformation

InSAR time series

 Surface Deformation is Key Observable from Space

Discrete Continuous

Temporal Coverage

Observations to Prediction

- InSAR time series

Seismicity

Community Modeling **Environment**

- General Earthquake Model (GEM) is prototype
- SCEC community model
- Included in Solid **Earth Real-time Virtual Observatory** (SERVO)

Dynamic Earthquake Hazard **Assessment**

(monthly to annual/USGS)

- FEMA
- CA OES
- Urban planners
- Insurance Industry

Driving Mission Requirements

Measurements of surface displacement:

- Interseismic strain requires long time series, very high displacement sensitivity
- Transient and coseismic deformation and disaster response require high resolution and frequent access capability
- Maintain maximum surface correlation → longer wavelength

	Minimum	Goal
Displacement accuracy (1–D)	25 mm instantaneous	5 mm instantaneous
3-D displacement accuracy	50 mm (1 week)	10 mm (1 day)
Displacement rate	2 mm/year (over 10 yr)	1 mm/year (over 10 yr)
Repeat period	8 days	1 day
Daily coverage	6×10 ⁶ km ²	Global (land)
Map region	±60° latitude	Global
Spatial resolution	50–100 m	3–30 m
Geo-location accuracy	25 m	3 m
Swath	100 km	500 km
Data latency in case of event	1 day	Minutes-hrs

Geosynchronous SAR Accessibility

- No global coverage
- DC in view for 12 hrs, but also out of view for 12 hrs
- Increased performance for one area at expense of other areas (dwell on one area implies less data of other areas)
- Most useful if we know where interesting areas are

Advantages from Altitude

 Accessibility advantages of geosynchronous SAR come mainly from high altitude, not geosynch nature per se

 High-altitude MEO may offer similar advantages

Minimum Antenna Area

- Fine spatial resolution can be attained even from very high altitude SARs
- However, still have minimum antenna area constraint due to range-Doppler ambiguities:

$$A \ge k \frac{4 \, rl \, v \tan q_{\text{inc}}}{c}$$

 High altitude SARs will require very large antennas, so lightweight antenna technologies needed

Footprint Area vs. Altitude

- Sensor footprint area grows with altitude
 - Limited by antenna steering capability at low altitudes
 - Limited by usable groundsquint angle at high altitudes
 - Note: Cannot necessarily acquire data from whole footprint simultaneously
- Sweet spot may be around 10–20,000 km (high MEO)

Shown: Two-sided sensor footprint area assuming ±15° azimuth beam steering and ±60° maximum ground squint

Repeat Period vs. Accessibility

- Accessibility of ground target from arbitrary angle is quantity of interest for standard imaging
- Temporal resolution of InSAR measurements also highly dependent upon orbit repeat period
 - Images comprising interferogram must be acquired from same viewing geometry
 - Effective repeat period can be reduced with multiple spacecraft following same ground track
 - Greater accessibility may imply shorter repeat periods
 - Multiple interferometric pairs from different viewing geometries can be averaged (stacked) for greater accuracy

Accessibility Rate

- Footprint area is static quantity
- Accessibility rate is perhaps more indicative of InSAR performance
 - Multiply swath width by nadir-point velocity
 - Roughly proportional to orbit-average accessibility, rather than instantaneous accessibility
- Optimal altitude around 3000 km (low MEO)

Shown: Two-sided accessibility rate, assuming broadside acquisition only (nadir-point velocity averaged over orbit)

MEO Design: Altitude Trades

- Accessibility rate peaks around 3000 km altitude
 - Assumes coverage limited by ground incidence angle
 - Assumes antenna area and steering sufficient
 - Capability for 24-hour accessibility not considered
- If antenna area fixed, coverage better at lower altitudes
- Altitude trades for 2500–5000 km regime:

	Lower Better	Higher Better	Notes
Accessibility rate (antenna area fixed)	X		Slow effect
Antenna steering requirement		X	Slow effect
Launch mass margin	X		Slow effect
Ground station visibility		X	Slow effect
Transmit power	X		Fast effect
Radiation environment	X		Fast effect

MEO Point Design

Altitude 3040 km

- Two-day repeat period (every 19 orbits)
- Inclination 112° (sun-synchronous)
 - Dawn/dusk orbit gives better ionospheric conditions for InSAR
 - Simplified power and thermal subsystems
- Coverage gaps typically ~12 hours, worst-case ~36 hours
- Good 3-D displacement accuracy because of multiple look directions
- Polarimetry possible for steeper incidence angles
- Antenna area 400 m² (10 x 40 m baselined)

3000 km MEO Accessibility

Nearly 90% of Earth surface accessible within 12 hours

Accessibility for a single SAR at 3000 km altitude after 12 hours

3-D Displacement Accuracy

- Resolving vector components of surface motion requires diversity of viewing angles for each ground location
- Very good 3-D accuracy achievable with MEO design

Worst vector component of 3-D displacement accuracy, normalized by lineof-sight accuracy, after incorporating all data from one repeat cycle

Radiation Effects

- MEO radiation environment is known to be severe
 - Total ionizing dose (TID)
 - Displacement damage
 - Charging/electrostatic discharge (ESD)
 - Single event upsets (SEU)
- Effects highly variable for different orbits
- Radiation especially of concern for lightweightantenna technologies relying on distributed electronics-heavy shielding impossible
- Some radiation effects perhaps just as bad (or worse) at geosynchronous

Cumulative Accessibility

- Accessibility performance depends on requirements and time scales of interest
- Higher altitudes (e.g., geosynch, high MEO) perhaps better for time scales less than a few hours
- Lower altitudes (e.g., low MEO) perhaps better for time scales greater than a few hours

Shown: Cumulative percentage of Earth surface covered by various SAR configurations as a function of time.

MEO altitude is 3040 km (2 day repeat for 1 platform, 1 day repeat for 2 platforms).

Conclusions

- High altitude vantage points (above 10,000 km) for SAR sensors could offer unique advantages in accessibility and operational flexibility
- Intermediate MEO altitudes (1500–5000 km) could offer significant advantages in reduced orbit repeat time and InSAR temporal sampling
- Development of lightweight antenna technologies needed for both

Backup Slides

Mapping Crustal Stress from Space

- Stress can be inferred from dense geodetic (InSAR and GPS) observations
- Thermal/IR and electromagnetic emissions may indicate the changing state of stress in the crust
 - VLF magnetic fields associated with earthquakes are thought to result from piezomagnetic effects
 - Thermal anomaly was observed for Hector Mine and possibly other earthquakes
 - However, no unequivocal systematic behavior has been identified, and physical explanations of observations are unsatisfactory or untested

- We conclude that more systematic data analysis, and ground-based and laboratory research, into stress-related thermal and electromagnetic emissions is needed to define observational requirements
 - Addressed by ASTER, MODIS, Demeter (CNES), swarm(ESA)

The Earthquake Cycle

Simple Physics:

- Surface Deformation linear
- Recurrence time is predictable

Transient preseismic deformation Transient postseismic deformation

Complex Physics:

- Surface Deformation non-linear
- Faults interact

Far Range Look Angle vs. Altitude Jet Propulsion Laboratory California Institute of Technology

SAR Integration Time vs. Altitude Jet Propulsion Laboratory California Institute of Technology

Science/Mission Roadmap

